Skip to main content

Welcome to DBA Master – Database Tips, Tricks, and Tutorials

Welcome to DBA Master ! This blog is dedicated to all things related to database administration , SQL optimization , and performance tuning . Whether you're a beginner or a seasoned DBA, you'll find practical guides, troubleshooting tips, and real-world tutorials to help you work smarter with data. What to Expect: SQL performance tuning tips Indexing strategies Backup and recovery best practices High availability and replication techniques Database creation, configuration, and setup Monitoring queries and scripts for proactive performance management Migration guides across different database platforms Security essentials and best practices Recommended tools for DBAs Real-world error fixes and how to solve them Stay tuned — exciting content is coming soon. Feel free to bookmark and share: www.dbamaster.com ! Thanks for visiting!

PostgreSQL Architecture and Components

How Connections are established:

        PostgreSQL is implemented using a simple “process per user” client/server model. In this model there is one client process connected to exactly one server process. As we do not know ahead of time how many connections will be made, we have to use a master process that spawns a new server process every time a connection is requested. 

        This master process is called postgres and listens at a specified TCP/IP port for incoming connections. Whenever a request for a connection is detected the postgres process spawns a new server process. 

        The server tasks communicate with each other using semaphores and shared memory to ensure data integrity throughout concurrent data access.

        Once a connection is established the client process can send a query to the backend (server). The query is transmitted using plain text, i.e., there is no parsing done in the frontend (client). 

        The server parses the query, creates an execution plan, executes the plan and returns the retrieved rows to the client by transmitting them over the established connection.

Components:


PostgreSQL Architecture Diagram:

Libpq:

        Libpq is the C application programmer’s interface to PostgreSQL. Libpq is a set of library functions that allow client programs to pass queries to the PostgreSQL backend server and to receive the results of these queries.
Libpq is also the underlying engine for several other PostgreSQL application interfaces, including those written for C++, Perl, Python, Tcl and ECPG

Postmaster:

        When a client request for connection to the database, firstly request is hit to Postmaster daemon process. After performing authentication and authorization it forks one new backend server process (postgres). Henceforth, the frontend process and the backend server communicate directly without intervention by the postmaster.

        The postmaster is always running, waiting for connection requests, whereas frontend and backend processes come and go. The libpq library allows a single frontend to make multiple connections to backend processes.

        However, each backend process is a single-threaded process that can only execute one query at a time; so the communication over any one frontend-to-backend connection is single-threaded.

        One postgres process exists for every open database session. Once authenticated with user connection, it directly connects with shared memory.

Comments

Popular posts from this blog

Oracle Database 19C Performance Tunning - PART 1

Advantages: 1. Improved Query Performance •    Optimized SQL execution plans lead to faster query response times. •    Reduces unnecessary full table scans and improves indexing strategies. •    Parallel execution tuning speeds up large data processing tasks. 2. Better Resource Utilization •    Efficient use of CPU, memory, disk I/O, and network resources. •    Reduces contention on Redo Logs, Undo Tablespaces, and Buffer Cache. •    Helps in load balancing across multiple instances in RAC (Real Application Clusters). 3. Increased System Scalability •    Ensures that the database can handle a growing number of users and transactions. •    Proper tuning allows scaling without degrading performance. •    Optimized parallel processing ensures better performance on multi-core servers. 4. Lower Infrastructure Costs •    Reduces the need for add...

Oracle RMAN Backup And Restore

RMAN: (Oracle 8) RMAN (Recovery Manager) is a utility provided by Oracle Database to perform backup, restore, and recovery operations. It is a command line tool. Features of RMAN in Oracle 19c Comprehensive Backup Capabilities: Full and incremental backups. Block-level backups for efficient data storage. Archived redo log backups. Fast Recovery Area (FRA) integration for centralized backup storage. Efficient Recovery Options: Point-in-time recovery (PITR). Complete and incomplete recovery. Flashback database capabilities for quick undo of changes. Multitenant Database Support: RMAN fully supports container databases (CDBs) and pluggable databases (PDBs). Provides flexibility to back up and recover individual PDBs or entire CDBs. Automatic Space Management: Manages disk space in the FRA. Automatically deletes obsolete backups and archived logs. Data Deduplication and Compression: Backup optimization through block-level deduplication. Built-in compression algorithms to reduce storage req...

Oracle 19c Database Software Installation in OEL8

 Pre-requisites for OS level:            Set the static IP Address     Disable the Firewall (systemctl stop firewalld & systemctl disable firewalld)     set SELINUX=permissive on /etc/selinux/config  ##Need to restart the server use init 6 Oracle Installation Pre-requisites Methods     Automatic Setup     Manual Setup      Automatic requisites Setup: (avoid step 1 to step 5): dnf install -y oracle-database-preinstall-19c Install the dependencies: curl -o oracle-database-preinstall-19c-1.0-2.el8.x86_64.rpm https://yum.oracle.com/repo/OracleLinux/OL8/appstream/x86_64/getPackage/oracle-database-preinstall-19c-1.0-2.el8.x86_64.rpm dnf -y localinstall oracle-database-preinstall-19c-1.0-2.el8.x86_64.rpm Manual Setup: step 1: Add the karenl parameters and values vi /etc/sysctl.conf     fs.file-max = 6815744 kernel.sem = 250 32000 100 128 kernel....